Matrix-Valued Orthogonal Polynomials Related to SU(N+ 1), Their Algebras of Differential Operators, and the Corresponding Curves
نویسندگان
چکیده
The theory of matrix valued orthogonal polynomials (MVOP) was introduced by M. G. Krein in 1949. Systematically studied in the last 15 years.
منابع مشابه
Matrix-valued polynomials generated by the scalar-type Rodrigues' formulas
The properties of matrix valued polynomials generated by the scalartype Rodrigues’ formulas are analyzed. A general representation of these polynomials is found in terms of products of simple differential operators. The recurrence relations, leading coefficients, completeness are established, as well as, in the commutative case, the second order equations for which these polynomials are eigenfu...
متن کاملSe p 20 09 MEIXNER POLYNOMIALS OF THE SECOND KIND AND QUANTUM ALGEBRAS REPRESENTING
We show how Viennot’s combinatorial theory of orthogonal polynomials may be used to generalize some recent results of Sukumar and Hodges on the matrix entries in powers of certain operators in a representation of su(1, 1). Our results link these calculations to finding the moments and inverse polynomial coefficients of certain Laguerre polynomials and Meixner polynomials of the second kind. As ...
متن کاملMeixner polynomials of the second kind and quantum algebras representing su ( 1 , 1 )
We show how Viennot’s combinatorial theory of orthogonal polynomials may be used to generalize some recent results of Sukumar and Hodges (Hodges & Sukumar 2007 Proc. R. Soc. A 463, 2401–2414 (doi:10.1098/rspa.2007.0001); Sukumar & Hodges 2007 Proc. R. Soc. A 463, 2415–2427 (doi:10.1098/rspa.2007.0003)) on the matrix entries in powers of certain operators in a representation of su(1, 1). Our res...
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2007